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Abstract–The problem of obtaining valid confidence intervals based on estimates from sampled distri-
butions using Monte Carlo particle transport simulation codes such as MCNP is examined. Such intervals
can cover the true parameter of interest at a lower than nominal rate if the sampled distribution is ex-
tremely right-skewed by large tallies. Modifications to the standard theory of confidence intervals are
discussed and compared with some existing heuristics, including batched means normality tests. Two new
types of diagnostics are introduced to assess whether the conditions of central limit theorem–type results
are satisfied: The relative variance of the variance determines whether the sample size is sufficiently large,
and estimators of the slope of the right tail of the distribution are used to indicate the number of moments
that exist. A simulation study is conducted to quantify the relationship between various diagnostics and
coverage rates and to find sample-based quantities useful in indicating when intervals are expected to be
valid. Simulated tally distributions are chosen to emulate behavior seen in difficult particle transport prob-
lems. Measures of variation in the sample variance s2 are found to be much more effective than existing
methods in predicting when coverage will be near nominal rates. Batched means tests are found to be
overly conservative in this regard. A simple but pathological MCNP problem is presented as an example of
“false” convergence using existing heuristics. The new methods readily detect the false convergence and
show that the results of the problem, which are a factor of 4 too small, should not be used. Recommenda-
tions are made for applying these techniques in practice, using the statistical output currently produced by
MCNP.

I. INTRODUCTION

Monte Carlo simulations performed on radiation
transport codes such as MCNP (Ref. 1) are extensively
used in nuclear engineering to model the behavior of
systems of particles and to obtain estimates of certain
physical parameters, such as the mean fraction of parti-
cles entering or leaving a given region. These simula-
tions typically employ variance reduction schemes that
result in sampled tally distributions that can be ex-
tremely right-skewed. This skewness can make estima-
tion and confidence interval formation of underlying

population parameters difficult, as it may take a long
time to obtain a sample representative of the entire un-
derlying distribution. In this paper we examine the prob-
lem of obtaining confidence intervals for means under
these conditions.

To illustrate, consider the following test problem
originally discussed in Forster, Booth, and Pederson.2
The quantity of interest was the surface neutron leak-
age flux above 12 MeV from an isotropic 14-MeV neu-
tron point source of unit strength at the center of a 30-
cm-thick concrete shell with an outer radius of 390 cm.
The variance reduction techniques used were implicit
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capture with weight cutoff, low-score point detector
Russian roulette, and a 0.5-mean-free-path (4-cm) neigh-
borhood around a point detector. The correct answer,
based on a long (1-billion-history) run with the more
stable ring detector, is 5.64 ! 10"8 n0cm2!s # 0.02%.
Table I shows a tally fluctuation chart (TFC) from point
detector tally 35 for a run of 20 000 independent sample
histories (i.e., n $ 20 000); a TFC tracks various sam-
ple statistics over time. Figure 1 shows a log-log prob-
ability density plot of the data. The solid line represents
the 1-billion-history point detector density, the long-
dashed line the 1-billion-history ring detector density,
and the short-dashed line the point detector density af-
ter 14 000 histories. Both the TFC and density plot are
statistical tools that are currently available in MCNP,
Version 4A.

The result for n $ 1000 histories has a small relative
error (RE) of 0.73%. An experienced Monte Carlo prac-
titioner might well have accepted the result at 14 000 his-
tories as valid, with small RE and fairly constant figure
of merit (FOM). However, jumps in statistics between
14 000 and 15 000 and again between 19 000 and 20 000
indicate that the estimation has not stabilized by this time.
Not only does the sample mean appear unstable (it jumps
by nearly 25% as n goes from 19000 to 20 000), it grossly
underestimates the true mean (by a factor of 4). Confi-

dence intervals for the mean flux fall short of the true
value by a factor of 3. All the statistics shown should be
stable and relatively unbiased if the problem has con-
verged. Furthermore, the density plots in Fig. 1 indicate
that there are areas of the tally distribution, basically any
scores%10"5, that have not been adequately sampled with
14 000 histories. Should this result be accepted? The new
diagnostics discussed herein, and alluded to in this ex-
ample, will clearly indicate that sampling needs to con-
tinue, as estimation of the flux has not yet stabilized.

In problems such as this, the relevant question to ask
is whether the user has run the code for a sufficiently
long period of time to ensure reasonably valid inference
about the parameter of interest. In statistical terms, this
is equivalent to asking if the sample size n (i.e., number
of histories) is sufficiently large so that the standardized
sample mean follows an approximately normal (Gauss-
ian) distribution, and thus confidence intervals for the pa-
rameter, using the first two sample moments, are valid.

This paper proceeds as follows: Sec. II discusses in-
terval estimation for means and describes some heuris-
tics used in MCNP4A to indicate when enough data have
been obtained. Improvements to these methods, based on
higher order moment expansions and characterizations
of the tails of distributions, will be examined. We also
consider other methods currently used, specifically,
batched means and normality tests. Section III describes
a simulation study investigating these new methods and
some techniques for predicting coverage rate validity. The
paper concludes with some recommendations for the
Monte Carlo transport code user and the application of
these recommendations to the example problem.

While the use of higher moment estimators to assess
the convergence of means in non-Gaussian settings has
existed for many years (see Ref. 3 for an early treat-
ment), the use of tail characterization parameters (such
as the slope) is a more recent development (e.g., Ref. 4).
Much of this work grew out of the problem of predicting
excedances over thresholds (e.g., the likelihood of water
levels cresting over flood stage). There is now a great
deal of interest in extremely long-tailed distributions in
fields such as telecommunications and finance (Ref. 5
models waiting times for Ethernet traffic), but up to now
the primary interest has been in the characterization of
the distribution and not in the properties of the sample
mean (other than the question of whether the underlying
population mean is finite). We believe this paper is the
first attempt to use these two methodologies in combi-
nation to obtain confidence intervals for means of se-
verely skewed distributions.

This paper focuses on highly nonnormal underlying
distributions. None of the methods we propose hamper
estimation in well-behaved cases (i.e., the skewness cor-
rection factor converges to zero as the underlying distri-
bution becomes more symmetric). Rather, our methods
attempt to improve and characterize the convergence to
approximate normality of sample means from highly

TABLE I
Tally Fluctuation Chart for Example Problem,

from Point Detector Tally 35
@m $ 5.64 ! 10"8(#0.02%)]

n Sx RE VOV FOM SLOPE

1000 1.2806E"08a 0.0073 0.9838 122 708 1.8
2 000 1.3779E"08 0.0623 0.9332 810 1.7
3 000 1.3576E"08 0.0432 0.8530 1 096 1.7
4 000 1.3496E"08 0.0342 0.7144 1 289 1.7
5 000 1.3897E"08 0.0415 0.4327 694 1.6
6 000 1.3701E"08 0.0351 0.4328 803 1.5
7 000 1.4625E"08 0.0730 0.7264 157 1.5
8 000 1.4395E"08 0.0649 0.7264 174 1.5
9 000 1.4237E"08 0.0584 0.7247 191 1.4
10 000 1.4133E"08 0.0530 0.7186 208 1.4
11 000 1.4017E"08 0.0486 0.7183 224 1.4
12 000 1.4004E"08 0.0451 0.6869 238 1.4
13 000 1.4212E"08 0.0437 0.5425 234 1.4
14 000 1.4124E"08 0.0409 0.5421 249 1.4
15 000 1.5084E"08 0.0781 0.6495 63 1.3
16 000 1.4993E"08 0.0737 0.6479 67 1.3
17 000 1.4872E"08 0.0700 0.6479 70 1.3
18 000 1.4849E"08 0.0663 0.6423 73 1.3
19 000 1.4805E"08 0.0631 0.6388 77 1.3
20 000 1.8390E"08 0.1464 0.4065 14 1.3

aRead as 1.2806 ! 10"8.
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non-Gaussian distributions. Obviously, because these
methods are data driven, if a portion of the phase-space
is unsampled, our techniques will not account for the cor-
responding contribution to the quantity of interestm. How-
ever, no data-driven method will do so. There is always
the chance of a “silver bullet” region of probability that
has not been sampled, but the likelihood of such an event
cannot be determined without auxiliary information.

II. CURRENT PRACTICE AND NEW RESULTS

Monte Carlo particle transport codes are invaluable
tools. They simulate processes that are too costly or dif-
ficult to physically measure or that have no direct ana-
lytical solution.As seen in the example, a code is typically
run for a predetermined number of histories n or com-
puter time T, and tallies are kept for the estimates of in-

terest. These calculated tallies are sample means that
estimate some underlying physical parameter m. In what
follows, we will model the tally quantity of interest as a
random variable X with distribution function F~x! $
P~X " x! and density function f ~x! $ F '~x!, the latter
being defined where F~x! is continuous. The probability
of X falling in the small interval ~x, x & dx! is f ~x! dx.
When there are discontinuities in F, corresponding to
probability at a point as opposed to an interval, f is aug-
mented by the probabilities of those discrete points, i.e.,
by p~x!$ P~X$ x!, so that the following definition holds:
* f ~x! dx $ 1. The expectation or mean of X is m $
*xdF~x! $ *xf ~x! dx. We will denote the sample mean
based on n independent and identically distribution (iid)
observations or histories x1, . . . , xn as

Sx $
1
n (i$1

n

xi , (1)

Fig. 1. Tally 35 histogram.
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which is usually taken as the point estimate of m. The
variance s2 @$ *~x " m!2 dF~x!# of X is estimated by
the sample variance s2:

s2 $
1

n " 1 (i$1
n

~xi " Sx!2 '
1
n( xi2 " Sx 2 , (2)

where the last formula applies for large n. For random
variables of only one sign (either positive or negative),
the relative error, or coefficient of variation, is used to
measure the variation in X relative to its mean and is sim-
ply the ratio s0 Sx. The analogous relative error for the sam-
ple mean Sx is given by

RE $
s
#n Sx , (3)

where s0!n is the standard error of Sx. An associated quan-
tity, the FOM, is defined as

FOM $
1

RE2 ! T , (4)

where T is the total computer time taken to obtain n
histories. For the distributions considered here, T will
be directly proportional to n. In this case, the FOM is
proportional to the squared signal-to-noise ratio; i.e.,
FOM # Sx20s2. Signal-to-noise ratios represent the amount
of information available aboutm, and in general, the larger
the signal-to-noise ratio, the better.

II.A. Confidence Intervals

Confidence intervals for m are formed by assuming
that Sx has an approximately normal (Gaussian) distribu-
tion for large samples. Specifically, for a sequence of iid
observations x1, . . . , xn , and assuming that at least two mo-
ments of X are finite, the central limit theorem states that

!n~ Sx " m!

s
; N~0,1! (5)

as nr `, where N~0,1! denotes a standard normal ran-
dom variable; i.e., it has zero mean and unit variance. In
general, s2 is not known, and in practice it is estimated
by s2. It can also be shown, with the same assumptions,
that the pivotal statistic

t $
!n~ Sx " m!

s (6)

has a limiting N~0,1! distribution. However, unless four
moments of the underlying distribution are finite, the rate
of convergence of t to normality can be much slower than
n"102, because s2 is not guaranteed to converge to s2 at
rate n"1 (see Refs. 6 and 7). Inverting t obtains 100 !
~1 " a!% two-sided confidence intervals I for m of the
form

I $ ~la ,ua! $ ~ Sx & za02 s0!n, Sxn & z1"a02 s0!n! , (7)

where zn represents the 100 ! $ percentage point of the
standard normal distribution. One-sided intervals are com-
puted similarly; the upper 100 ! ~1 " a!% interval
for m is

Iu $ ~"`, Sx & z1"a s0!n! , (8)

where the left end point can be replaced by zero if X is
nonnegative.

When severe skewness is present in the data, these
asymptotic approximations may be inaccurate in what are
commonly thought to be “large-sample” situations (see
Ref. 8, for example). Confidence intervals are said to be
valid if they cover the parameter of interest the nominal
(i.e., 1 " a! fraction of the time.9 Upper limits tend to
cover at rates lower than 1 " % if right-skewness exists,
as all moment estimates are biased downward (i.e., they
tend to underestimate the corresponding population mo-
ment), and hence the upper end point of I or Iu is too
small on average. Lower limits are less sensitive because
the biases in Sx and s partially cancel out. Another com-
monly used measure of confidence interval performance
is the expected half-width of the interval (see Ref. 10).
The expected half-width is estimated by z1"a02 s0!n,
which is negatively biased (too small) in the presence of
skewness.

Low coverage rates are generally the result of too
few large xi being observed, not too many; in the exam-
ple from Sec. I, the estimates and confidence intervals
were three times too low, as not enough large observa-
tions had been sampled, even for n $ 20 000. This per-
haps runs counter to intuition, as it is often the jumps in
statistics monitored over time that cause the concern that
the underlying process is being inadequately sampled. Ex-
tremely large scores xi will occur from time to time and
may shift the sample mean dramatically. However, the
impact of these large observations should lessen as n be-
comes large. These occasional shifts are in fact the nec-
essary rare contributions from the tail of the distribution.
What is also necessary for valid inference is some indi-
cation that the conditions of the large-sample theory ap-
ply, in particular that at least two and preferably four
moments are finite. If the variance is infinite, confidence
intervals will not have the behavior prescribed by the cen-
tral limit theorem, even for large n. In this case, the sam-
ple mean Sx will converge to m, but at an indeterminate
rate. Intervals will grow large asymptotically, resulting
in a coverage probability of 1, but coverage rates are not
guaranteed to be conservative for any finite sample size.

Heuristic rules have evolved over time to give the user
guidance concerning when the large-sample normal ap-
proximation is valid; see Forster, Pederson, and Booth.11
The most popular of these relies on the relative error of Sx
and states that anREof 0.10 (0.05 for a point detector tally)
is the largest value consistent with a converged solution.
This result is based on the fact that if a two-point (say 0 and
1) distribution were considered, one hundred 1’s would
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correspond to an RE of 0.10; this number of 1’s provides
approximate normality for t. However, for an arbitrary dis-
tribution, a similar heuristic is less obvious. [Note also that
there is a direct relationship between the half-width of a
confidence interval andRE. Inparticular, a 100! ~1"a!%
interval has relative half-width z1"a02RE.]

II.B. Other Methods

II.B.1. Mixture Distributions

Lux andKoblinger12 describe amethod for efficiently
estimating the samplemeanof a distribution that is themix-
ture of point mass at zero and a (nonzero) Gaussian dis-
tribution. While many relevant distributions in neutron
particle transport (especially those employing variance re-
duction techniques) can be considered as a similar sort of
mixture distribution, the Gaussian assumption is untena-
ble for the distributions we are considering. In particular,
if the nonzero score tail is Gaussian, then the mixture dis-
tributionof zero andnonzero scoresbehaves essentially like
a binomial distribution.Abinomial distribution is verywell
behaved, and its corresponding samplemean quickly con-
verges to a Gaussian. That is, standard confidence inter-
val estimation methods work well.

II.B.2. Batched Means and Normality Tests

Themethods of batchedmeans and normality tests are
often used to assess the convergence of a mean to normal-
ity.The idea behind each is simple.Themethod of batched
means replaces the original sequenceof datax1, x2, . . . ,with
a sequence of batched means Sx1* , Sx2* , . . . , where each Sxi* is
the mean of B successive observations. This sequence of
batched means is now treated as the sequence of data, and
variance estimation is based on the new sample of size
m$ n0B (Refs. 12 and 13). Generally, bothm and B grow
as n does. This method is especially useful when the data
stream is correlated, as it improves estimation of the vari-
ance of the sample mean. However, when the data are in-
dependent, as in the cases discussed in this paper, Refs. 12
and14give derivations showing that the optimal batch size
for variance estimation is B $ 1. That is, in independent
sampling situations, batching means is less efficient than
not batching.

Another use of batched means is in the determina-
tion of normality of the distribution of the overall sam-
ple mean. The idea behind normality tests is that if a
sample does not appear to be statistically significantly
different from a Gaussian distribution, one may assume
that normality is an adequate representation of the dis-
tribution in question. Two commonly used normality tests
are the Wilk-Shapiro test (a formal hypothesis test) and
the use of q-q (quantile-quantile) normal plots.15 TheWilk-
Shapiro test and q-q plots each compare the ordered ob-
servations of a sample with the expected quantiles of a
Gaussian distribution. A modified version of the Wilk-
Shapiro statistic that is much easier to compute is15

W ' $
~uTa!2

~aTa!( ~ui " Su!2
, (9)

where u is a vector of data $ui% of length r with mean Su,
and a is a vector of expected order statistics from a stan-
dard Gaussian distribution. That is, ai is the expected value
of the i’th ordered observation from a sample (of size r!
from a standard Gaussian. W ' is the squared correlation
between u and a and will be near 1 (1 $ perfect corre-
lation) for a sample that is nearly normal. Many other
goodness-of-fit tests are available; see Ref. 12. Q-q plot-
ting is a graphical technique similar in spirit to the Wilk-
Shapiro test, in that one plots the ordered observations
from the sample against the ordered quantiles from a nor-
mal distribution. If no large departures from normality
are present, this plot should approximate a straight line.

Returning now to the problem of whether the mean
arising from a highly skewed distribution has an approx-
imately Gaussian distribution, a common technique in
detecting nonnormality is to use one of the normality tests
on a set of batched means. In this case, inferences are
not on either the original distribution or the distribution
of Sx but rather on the distribution of batched means
Sx1* , Sx2* , . . . , each of size B. Thus, if a batched mean test
indicates normality, one can infer that the overall mean,
based on a larger sample, should also follow a Gaussian
distribution. However, the converse is not necessarily true.
If the batched mean test rejects normality, there is no def-
inite indication regarding the convergence of Sx. In the
situations described in this paper, we deal with ex-
tremely skewed distributions, so the overall mean will
converge much sooner than the batched means do. Hence
batched means tests are not an efficient method for de-
tecting normality of overall means generated in highly
skewed situations. Section III.C.1 examines a simulation
of W ' and discusses its utility as an indicator of normal-
ity of the overall sample mean Sx.

The remainder of this section will discuss three types
of improvements to the methods presented so far. To be-
gin, higher moment quantities such as the relative vari-
ance of the variance (VOV) are used to characterize the
convergence of t to normality. Next, higher moment mod-
ifications to the standard confidence intervals are dis-
cussed. The section closes with methods for incorporating
information about the shape of the tail of the density f ~x!.

II.C. Higher Order Approximations

To improve the performance of confidence intervals
when skewness is present, additional moment informa-
tion is needed. We will consider expansions for t based
on higher order moments (when they exist) and also mod-
els for characterizing the right-hand tail of the density
f ~x! of X.

Edgeworth expansions16 are power series represen-
tations of distributions of sums of iid random variables
in terms of higher order moments. They are useful in
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characterizing departures from normality. Expansions are
also available for functions of these sums, such as the
pivotal statistic t, a function of (xi and (xi2. The cumu-
lative distribution function (cdf ) of t, Gt~x!, can be writ-
ten as

Gt~x! $ P~t " x!

$ F~x! & f~x!@n"102q1~x! & {{{ & n"j02qj~x!#

& o~n"j02! , (10)

whereF~x! andf~x! are the distribution and density func-
tions, respectively, for a standard normal, and o~u! rep-
resents a term for which o~u!0u r 0 as u r 0. This
expansion in j terms is valid if j & 2 moments exist and
the distribution function F~x! is absolutely continuous
(i.e., X has a continuous density function). When these
conditions do not exist, it is not possible to characterize
the remainder in this manner (i.e., terms of all orders of
n"102 exist in the remainder), and the rate of convergence
to normality is indeterminate. The functions qj are poly-
nomials whose coefficients are functions of the moments
of X. The first two qj are

q1~x! $
1
6
m3
s3
~2x 2 & 1! (11)

and

q2~x! $ x! 112 m4s4 ~x 2 " 3! "
1
18
m32

s6
~x 4 & 2x 3 " 3!

"
1
4 ~x

2 & 3!" , (12)

wherem3 @$*~x"m!3 dF~x!#andm4 @$*~x"m!4 dF~x!#
are the third and fourth centralmoments, respectively, de-
fined analogously tom2$s2. From these formulaswecan
see thedirect dependenceof thecoverage rateon the scaled
higher order moments. Formulas for estimates of m3 and
m4 are direct analogs of the sample variance formula ~n, as
opposed to n" 1, is used as the divisor for large n!:

[m3 $
1
n (i$1

n

~xi " Sx!3 $
1
n #( xi3 " 3 Sx( xi3$ & 2 Sx 3 ,

(13)

[m4 $
1
n (i$1

n

~xi " Sx!4

$
1
n #( xi4 " 4 Sx( xi3 & 6 Sx 2( xi2$ " 3 Sx 4 .

(14)

Alternatively, we can obtain moment approxima-
tions for t via application of the delta method.16 First, we
will reparameterize in terms of moments of Sx and s2. In
particular, define the correlation between Sx and s2 as

r2 $ cor~ Sx,s2! $
m32

s2~m4 "s4!
(15)

and the squared coefficient of variation of s2 as

g2 $ cv2~s2! $
m4 " s4

ns4 . (16)

From Ref. 17, the mean and next three central mo-
ments of t are

E~t! $ "
rg

2 & O~n"302! , (17)

Var~t! $ E @t " E~t!#2

$ 1 &
3
n &

7
4 r

2g2 & O~n"2! , (18)

E @t " E~t!#3 $ "2rg & O~n"302! , (19)
and

E @t " E~t!#4 $ 3 &
6
n " 2g & 12r2g2 & O~n"2! ,

(20)
whereO~u! represents a term for whichO~u!0u is bounded
as ur 0. This parameterization is useful when skewness
is present. Solving Eqs. (15) and (16) for m30ns3 gives

m3
ns3 $ rg " g , 0 ( r " 1 . (21)

With high skewness, r, the correlation between Sx and s2,
is close to 1, and the bound in Eq. (21) is quite tight. This
suggests that in addition to the scaled third moment, the
coefficient of variation of s2 can be used to characterize
departures from normality of t. Sargent, Kang, and Golds-
man10 found empirical evidence that the variability of s2
is useful in this regard.

These results and empirical work18 have led Monte
Carlo researchers to employ the VOV (Ref. 19), or the
estimated relative variance of s2,

VOV $ [g2 $
[m4 " s4

s4n . (22)

(See Ref. 20 for discussion of a related term, the figure of
reliability, which substitutes VOV for RE in the FOM for-
mula.) Small values of VOV should correspond to t hav-
ingmean and variance near 0 and 1, respectively, with low
skewness. Some limited simulation results in Pederson17
found that a VOV( 0.1 corresponds to near-nominal up-
per interval coverages at a$ 0.05. References 21 and 22
cite similar heuristics involving the scaled third moment
directly, stating that gr should be much less than one for
the normality result to apply.Which measure is used mat-
ters little when the correlation between Sx and s2 is near 1,
and we will continue to use VOV in what follows because
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of its additional interpretation as the relative variance of
s2. Even in skewed situations with & near 1, the variability
of s2 is the determining factor in the convergence of t to nor-
mality. It should be noted again that third- and fourth-
moment estimators such as VOV are also biased low
because of the skewness in f ~x!, and hence they converge
more slowly to their expectations than does Sx or s2.

Illustrating the relationship between the first two
sample moments of long-right-tailed distributions,
Fig. 2 is a plot of 500 sample standard deviations ver-
sus sample means, generated under a right-skewed dis-
tribution (Pareto) for n $ 8000 with a mean of 5.4
(indicated by a dashed vertical line), standard deviation
of 55, and r $ 0.8. For a symmetric underlying distri-
bution with this mean and standard deviation, this plot
should look roughly like an ellipse with axes parallel to
the x and y axes, with Sx’s centered at 5.4 and s’s cen-
tered at 55 and themselves having standard error of )1
(as opposed to the observed standard error of 18). A
contour of equal probability from such a distribution is
superimposed on the plot. Any points lying inside the V
drawn on the plot correspond to confidence intervals (for
a given % level, in this case 0.10) that cover the true
mean m; ;a02 $ 0.05 of the points should fall outside
each arm of the V. In reality, 16% of the points fall to
the left of the V, and 2% fall to the right. (There are
three representative confidence intervals included on the

plot, one of which covers the true mean, one of which
misses on the low side, and one of which misses on the
high side.) The points falling to the left of the V thus
have upper intervals with an observed noncoverage rate
of more than three times the nominal rate. The tilt of
the data cloud corresponds to a nonzero correlation &
that persists as n increases. The variation (and asymme-
try) in s is also clearly seen. However, this variation
drops as n increases, and as the s values cluster around
their expected value (55 in this case), the fraction of
points lying on each side of the V approaches nominal
limits. The point here is that while the correlation be-
tween Sx and s2 is present whenever sampled data are
skewed, it is the additional variability in s2 that distorts
confidence interval coverages.

II.D. Modified Confidence Intervals

Several alternative confidence interval procedures
have been proposed for high-skewness cases. Johnson23
and Hall24 each derive modified intervals based on a
Cornish-Fisher expansion of t. Hall25 presented two al-
ternatives based on a monotonic transformation of an
Edgeworth expansion of t; these transforms have cover-
age rate error O ~n"1!, whereas the Cornish-Fisher–
based expansions have errorO~n"102!. The upper interval
from Ref. 25 we consider is

Fig. 2. Nominal 90% intervals for 500 Pareto samples, n $ 8000, r $ 0.80.
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Iu* $ #"`, Sx "
3 [s
Zz %!1 & Zz# za

!n "
Zz
6n$"103" 1&$ ,

(23)

where Zz $ [m30 [s3 is the scaled third-moment estimate.
This interval approaches Iu as Zz r 0 for fixed n and is
valid under the usual assumptions, the existence of at least
three moments, and the existence of a proper density func-
tion (equivalently, a continuous cdf ) for X.

II.E. Tail Characterization

The foregoing discussion assumes that sufficient
(usually three or four) moments exist. In some Monte
Carlo simulations this is not necessarily true, except
for m (and generally s2, but this is not guaranteed). One
way of determining how many moments exist is to model
the convergence of the sample moments (e.g., [m3 or [m4!.
Alternatively, directly modeling the tail of f ~x! can pro-
vide information about the existence of moments. We
consider distributions that follow a power law, i.e.,
P~X % x! } x"k&1, for x % x0, where x0 is a threshold.
The parameter k indexes how many moments of the dis-
tribution are finite: k % k implies that k " 1 moments
exist. This can be shown by noting that for power-law
distributions, f ~x! } x"k, and thus E~Xk! } *x0

`x k"k dx,
which is infinite for k ' k " 1.

A useful graphical tool for displaying the informa-
tion in the tail of a distribution is a log-log histogram
(e.g., Fig. 1), also called a log-log empirical density plot
(of X !. Histograms are bar plots with the area of the bars
equal to the relative frequency of data in the correspond-
ing x interval; for equally spaced intervals, the relative
frequency is equal to the height of the bar. As the sample
size and number of intervals become large, the histo-
gram converges to the true density f ~x!. Log-log histo-
grams are just regular histograms (or density plots) with
log scales for both axes. For the density of a power law
with parameter k " 1, the tail plotted in log-log scale
will be a straight line with slope"k; in what follows, we
will use k to denote what we refer to as slope (and will
use [k or SLOPE to denote the corresponding estimator).
The code MCNP4A supplies log-log histograms and es-
timated slopes of the sampled distributions, useful diag-
nostics for detecting whether the tail slope appears to drop
off sufficiently quickly (e.g., SLOPE % 5 implies that at
least four moments exist, if a power law is appropriate).
Log-log histograms can also show if change points occur
in the tail slope or whether exponential decrease is ob-
served ~k r `!. Because data may be sparse in the tail
regions, histograms can show gaps that may indicate ir-
regular or nonmonotonic tail shape, excessive discrete-
ness, or inadequate sampling of low-probability regions.

Estimates of tail slope are easy to obtain. A nonpara-
metric form due to Hill26 computes the mean of log ex-
cedences over a threshold x0:

SLOPE $ % 1r (j$n"r&1

n

log@X~n"r&j !0X~n"r!#&"1
& 1 ,

(24)

obtained from the largest r & 1 data values, where X~n"r!
is the largest sampled value not exceeding x0. A simple
alternative is the slope estimator in a linear regression of
log@f ~x!# versus log~x!, using frequencies obtained from
a log-log histogram.Another measure,27 and the one com-
puted in MCNP4A, is the maximum likelihood estimate
of a generalized Pareto distribution (gPd) slope param-
eter k. The generalized Pareto density function is

fgP~x;l,k!

$ %l"1$1 & x0@l~k " 1!#%"k 0 " x ( `, k ( `

l"1 exp~"x0l! 0 " x ( `, kr ` ,

(25)

where ( is a scale parameter and ) is a slope parameter,
with kr` corresponding to a limiting exponential dis-
tribution. The generalized Pareto distribution has the prop-
erty that excedences over a threshold also follow a gPd,
with ) unchanged.28 The maximum likelihood slope es-
timator used in MCNP4A is based on the largest 200 his-
tories, with at least three distinct values required and a
maximum value for ) of 10. This procedure gives esti-
mates roughly equivalent to those obtained by explicitly
selecting a threshold. To give an ;10% relative error in
the slope estimator when k$ 3, i.e., when two moments
exist, 200 points were chosen (see Ref. 27 for details).
Both the nonparametric and Pareto estimators are sensi-
tive to the choice of threshold value and to the fraction
of data sampled; thresholds need to be chosen suffi-
ciently far out in the tail so that the power law is a rea-
sonable approximation, but not so far out that data are
too sparse. Furthermore, the gPd estimator appears to
be more sensitive than the nonparametric estimator to
clumping of tail data. In any case, whether graphical or
numerical measures are used, recall that a slope (3 in-
dicates that the theoretical variance does not exist (based
on the available sampled data), and hence, the asymp-
totic normal-theory results for t do not apply.

II.F. Summary

Section II described some modifications to the cur-
rent practice for obtaining confidence intervals: (a) use
of third- or fourth-moment estimators to determine if con-
vergence has been achieved; (b) use of skewness-corrected
intervals; and (c) use of tail slope estimators and log-log
density plots to indicate the number of moments that ap-
pear finite. Section III reports simulations conducted to
determine the effectiveness of these procedures and to
search for sample-based quantities that indicate when n
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is sufficiently large for t to have converged to a standard
normal.

III. SIMULATION STUDY

This section reports results from a simulation study
of interval estimation with highly skewed analytic data.
The first goal of the simulation was to study the relation-
ship between coverage rate and the diagnostic statistics
described in Sec. II for finite samples. The second goal
was to evaluate sample-based indicators of coverage rate
validity, i.e., indicators of whether n is sufficiently large
that sampling can cease and valid confidence intervals
for m can be formed. Simulation distributions, described
in Sec. III.A, were based on analytic Monte Carlo distri-
butions that have behaviors typically found in particle
transport problems. Both continuous and discrete distri-
butions were used, with tail slope values chosen to ob-
tain a variety of coverage rates.

III.A. Simulation Distributions

Pederson17 considered the absolute value of a Cauchy
~avC ! random variable, truncated at a point U % 0. This
density function is a close approximation to those found
in some difficult observedMonte Carlo tallies.11 The den-
sity has x"2 (i.e., slope of 2) tail behavior, and without
truncation, no moments exist, but with truncation, all do.
The density is

favC~x;U ! $
2
p

1
1 & x 2 , 0 " x ( U , (26)

and

P~X $ U ! $ H~U ! $ 1 "
2
p
arctan~U ! , (27)

where the remaining mass accumulates atU. Another can-
didate distribution is the generalized Pareto [Eq. (25)].
This distribution allows for specification of any number
of finite moments, with the k’th moment existing if k %
k & 1.

To mimic a distribution that has Cauchy-like behav-
ior for x ( U but then drops off at a faster rate, we use a
composite absolute value Cauchy-Pareto distribution
~avCP!

favCP~x;k,U ! $ %favC~x;U ! 0 " x ( U
H~U ! fgP~x " U;lU ,k! x ' U ,

(28)
where the value of the scale parameter ( is chosen so
that Cauchy and Pareto contributions to the density are
equal at the transition point U. Note from Eq. (25) that
fgP~0;l,k!$ l"1; thus, lU $H~U !0favC~U;U !. The den-
sity favCP is a valid density with * favCP~x! dx$ 1. As with

the generalized Pareto, the k’th moment exists if the slope
k % k & 1. A suitably large value of U results in a dis-
tribution that for small sample sizes appears to have no
moments existing (as with the truncated Cauchy). As n
increases, however, the slope estimate should increase in
value and give evidence of finite moments as the Pareto
component of the tail is sampled more heavily. Figure 3
shows the log-log density plots of generalized Pareto and
absolute value Cauchy-Pareto (with U $ 1000! random
variables, with tail slopes of 3.5 and 5.17, respectively.
Note that eventually the Cauchy-Pareto drops off at a
faster rate than the pure Pareto.

An example arising from particle transport is an an-
alytic score distribution for a spatially continuous tri-
directional Monte Carlo transport problem using the
exponential transform, as described by Booth.29 The ex-
ponential transform can be used with either analog or im-
plicit capture. This distribution has support on a countable
set of points on the positive reals R&, as well as proba-
bility at zero. We will focus on the nonzero values for
these data. Particles are constrained to scatter either for-
ward or backward or up or down. Isotropic scattering,
typically used here, parameterizes this as follows: Parti-
cles have a 14_ probability of continuing in the same direc-
tion, a 1

4
_ probability of reversing direction, and a 1

2
_

probability of scattering at a right angle. Distributions
are indexed by an exponential transform parameter p and
a macroscopic scattering cross-section parameter ss . The
total macroscopic cross section st is always set to 1, so
that the ratio ss0st $ ss is the scattering probability. Fig-
ure 4 illustrates this distribution for parameters p $ 0.5,
ss $ 0.5, isotropic scattering, and analog capture. A log-
log histogram is superimposed on the plot, and the dots
correspond to theoretical score probabilities for the var-
ious numbers of forward and backward collisions a par-
ticle can make. This histogram approximates a density
for these scores, the tail shape of which is nearly linear,
with slope of ;5.5. This lends some theoretical support
for using continuous power-law distributions such as the
Cauchy and Pareto to model tail behavior for actual par-
ticle transport problems. However, note that sufficiently
fine binning of the histogram (not shown) reveals the dis-
crete, sawtooth pattern of the actual score probabilities.
Also, note that choosing implicit capture of particles re-
sults in a sampled distribution that, while still discrete, is
much smoother than the corresponding analog case.

III.B. Simulation Design

Five different simulation problems are presented here:

1. generalized Pareto with (slope) k $ 3.5, l $ 1,
two moments existing

2. absolute value Cauchy-Pareto with U$ 500, k$
5.17, four moments existing

3. absolute value Cauchy-Pareto with U $ 1000,
k $ 5.17, four moments existing
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Fig. 3. Log-log density plot for Pareto and Cauchy-Pareto distributions.

Fig. 4. Score probabilities (dots) and log-log histogram for analog tridirectional distribution, p $ 0.5, ss $ 0.5.
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4. tridirectional spatially continuous distribution,
p $ 0.5, ss $ 0.5, with isotropic scattering, an-
alog capture, and four moments existing

5. tridirectional spatially continuous distribution,
p $ 0.9, ss $ 0.5, with isotropic scattering, an-
alog capture, and two moments existing.

Problems 1 and 5 have only two moments existing,
while the remaining three problems have four finite mo-
ments, so these are all highly skewed distributions. How-
ever, we might expect problem 1, the pure generalized
Pareto, to converge more quickly than problems 2 and 3
because of the Cauchy tail component for these latter
problems. Problem 2 should converge more quickly than
problem 3 as U is smaller. Problem 5 should be the slow-
est to converge, as its distribution has a very shallow tail
slope and is highly discrete. Convergence rates can be
obtained from the Edgeworth expansions of Sec. II.B,
which require the existence of at least three moments and
a continuous sampled distribution; neither condition is
satisfied for problem 5. The distribution in problem 4 is
also discrete, but it is smoother than that in problem 5
(and has four moments existing).

The aforementioned five problems were chosen to
obtain a range of convergence behaviors for distribu-
tions with finite variance, with more interest in slow-to-
converge problems. Other problems were run by the
authors but are not included here; see Ref. 30 for analy-
ses. Two of these bear mention.A truncated absolute value
Cauchy with a large truncation point generated data that
behaved for the most part like that from a pure absolute
value Cauchy.All moment estimators, including the mean,
exhibited jumps indicative of infinite moments, until sam-
ple sizes were large enough to reflect the tail truncation.
A second additional distribution used was the tridirec-
tional distribution with implicit capture and with other
settings the same as in problem 5. For this problem, two
moments are finite, like the analog capture case, but the
additional smoothness of the distribution gives results that
are qualitatively similar to those seen in problem 1 (the
pure Pareto with two finite moments).

The simulation was designed as follows: For each of
the five problems, two independent ranges of sample sizes
n are generated. These ranges were chosen so that one
range has low coverage and the other has near-nominal
coverage. (This was accomplished except in problems 4
and 5; problem 4 has consistently good coverage rates,
and problem 5 has consistently low coverage rates.) Four
hundred independent replications were obtained for each
sample size range.

Within each range, data were collected in a manner
similar to that found in the MCNP tally fluctation charts
described in Sec. I. At each of 20 equally spaced num-
bers of histories n, the following statistics were stored:
n, Sx, RE, VOV, SLOPE, and cumulative maximum sam-
pled xi . For problems 1, 2, and 3, the Pareto slope esti-
mator [Eq. (25)] was used, and for problems 4 and 5, the

nonparametric estimator [Eq. (24)] was used; as men-
tioned in Sec. II.D, the nonparametric estimator appears
to be less sensitive to the clumping of tail values in highly
discrete sampled distributions. The primary measure of
coverage rate performance will be the observed cover-
age rate (OCR), the sample fraction of intervals Iu $
~"`,ua! that cover the true meanm. Nominal 95% upper-
tail intervals will be used here. Results for upper 90, 97.5,
and 99.5% are qualitatively similar and discussed more
fully in Ref. 31.With 400 replications, an OCR with 95%
true coverage has a standard error of 0.011. We will de-
fine near-nominal coverage to be within 3 standard er-
rors of the nominal rate, so that for 95% nominal coverage,
near-nominal refers to ;91.7% or higher coverage. For
right-skewed problems, lower-tail confidence intervals
cover at near-nominal rates and will not be analyzed here;
see Ref. 31 for details. Also computed at each n is the
observed modified coverage rate (OMCR) for upper-tail
intervals Iu*$ ~"`,ua* ! [using Eq. (23)] and the average
ratio of the half-widths of the two intervals ~ua* " Sx!0
~ua " Sx!.

III.C. Analysis of Summarized Data

Tables II through VI display the sample statistics de-
scribed previously, averaged over 400 replications, for
each of the problems and the ranges of n that were sim-
ulated. Average values of n are displayed for problems 4
and 5 because only the nonzero histories were used here.
In each case the smallest, largest, and five intermediate
sample sizes are given (20 were actually stored). Peder-
son31 reproduces the full tables, along with empirical cdf’s
and standard errors of the various statistics. Discrepan-
cies between low- and high-range results that have equal
n’s are all within acceptable sampling error limits, as
would be expected.

Examination of the OCRs indicate that convergence
was achieved most quickly in problem 4; both ranges have
coverages near 95%. Problems 1, 2, and 3 (ranked in the
order of convergence) also have near-nominal coverage
for the largest n’s. For each of these problems, the low
ranges have coverages falling somewhat below 95%.
Problem 5 does the worst, even with the largest absolute
sample sizes, with the OCR not moving much above 85%
for any simulated level of n. Several comments can be
made about the significance of these results before we
start examining their relation to RE,VOV, etc. The Cauchy
part of the absolute value Cauchy-Pareto distributions in
problems 2 and 3 induces considerably slower conver-
gence than the pure Pareto distribution from problem 1
exhibits, even though the tail of the avCP’s eventually
drops more sharply. Problem 4 is well behaved.

In problem 5, the second moment is barely finite, and
the convergence to normality is extremely slow. Addi-
tional runs of this problem provided evidence that con-
vergence is eventually achieved, albeit very slowly. For
n’s of 100 to 150 million, averageVOVdropped to;0.10,
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TABLE II
Averages and Observed Coverage Rates, a $ 0.05, for Problem 1—Generalized Pareto, k $ 3.5, m $ 1.6667

n Sx RE VOV FOM SLOPE OCR OMCR
u0.95* " Sx
u0.95 " Sx

Low Range, 400 Replications

200 1.6673 0.1226 0.202 0.394 4.93 0.868 0.932 1.65
400 1.6719 0.0921 0.166 0.347 7.37 0.900 0.938 1.50
800 1.6744 0.0680 0.137 0.312 7.23 0.920 0.935 1.42
1 000 1.6704 0.0608 0.123 0.308 6.23 0.905 0.930 1.38
2 000 1.6664 0.0436 0.094 0.292 7.03 0.908 0.932 1.28
3 000 1.6685 0.0363 0.088 0.278 5.29 0.902 0.918 1.25
4 000 1.6677 0.0317 0.080 0.271 6.33 0.910 0.930 1.23

High Range, 400 Replications

4 000 1.6641 0.0316 0.077 0.274 6.42 0.908 0.932 1.22
8 000 1.6662 0.0230 0.067 0.256 4.09 0.920 0.930 1.22
16 000 1.6674 0.0166 0.057 0.245 4.03 0.948 0.958 1.18
20 000 1.6676 0.0149 0.054 0.242 3.89 0.945 0.952 1.17
40 000 1.6680 0.0106 0.042 0.235 3.79 0.938 0.948 1.12
60 000 1.6667 0.0088 0.038 0.231 3.70 0.942 0.948 1.11
80 000 1.6667 0.0076 0.038 0.228 3.67 0.950 0.955 1.11

TABLE III
Averages and Observed Coverage Rates, a $ 0.05, for Problem 2—Absolute Value Cauchy-Pareto,

U $ 500, k $ 5.17, m $ 5.431

n Sx RE VOV FOM SLOPE OCR OMCR
u0.95* " Sx
u0.95 " Sx

Low Range, 400 Replications

800 5.412 0.239 0.443 0.0364 2.56 0.698 0.808 2.92
1 600 5.478 0.198 0.392 0.0233 2.28 0.778 0.875 2.73
3 200 5.418 0.149 0.297 0.0175 2.21 0.822 0.900 2.11
4 000 5.385 0.136 0.273 0.0163 2.20 0.840 0.915 1.99
8 000 5.433 0.104 0.200 0.0136 2.26 0.858 0.930 1.62
12 000 5.444 0.088 0.169 0.0125 2.30 0.885 0.922 1.49
16 000 5.449 0.077 0.148 0.0119 2.34 0.900 0.932 1.44

High Range, 400 Replications

8 000 5.427 0.105 0.210 0.0134 2.25 0.852 0.922 1.67
16 000 5.434 0.077 0.147 0.0119 2.33 0.908 0.935 1.42
32 000 5.429 0.055 0.096 0.0111 2.51 0.908 0.940 1.25
40 000 5.434 0.050 0.084 0.0108 2.59 0.922 0.948 1.23
80 000 5.434 0.036 0.056 0.0103 3.00 0.922 0.938 1.16
120 000 5.435 0.029 0.043 0.0101 3.33 0.925 0.938 1.13
160 000 5.427 0.025 0.035 0.0101 3.70 0.920 0.942 1.11
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TABLE IV
Averages and Observed Coverage Rates, a $ 0.05, for Problem 3—Absolute Value Cauchy-Pareto,

U $ 1000, k $ 5.17, m $ 5.832

n Sx RE VOV FOM SLOPE OCR OMCR
u0.95* " Sx
u0.95 " Sx

Low Range, 400 Replications

800 5.760 0.261 0.487 0.0344 2.77 0.630 0.795 2.97
1 600 5.723 0.216 0.435 0.0217 2.31 0.692 0.822 2.91
3 200 5.773 0.175 0.368 0.0143 2.15 0.760 0.862 2.57
4 000 5.835 0.167 0.354 0.0122 2.11 0.805 0.900 2.47
8 000 5.842 0.129 0.279 0.0097 2.16 0.815 0.900 1.99
12 000 5.838 0.110 0.239 0.0086 2.16 0.845 0.905 1.81
16 000 5.859 0.097 0.209 0.0079 2.17 0.855 0.925 1.68

High Range, 400 Replications

8 000 5.838 0.128 0.278 0.0094 2.14 0.838 0.920 1.96
16 000 5.852 0.097 0.210 0.0078 2.17 0.872 0.915 1.67
32 000 5.853 0.071 0.156 0.0069 2.23 0.888 0.940 1.47
40 000 5.852 0.064 0.138 0.0067 2.25 0.900 0.945 1.39
80 000 5.872 0.046 0.095 0.0062 2.35 0.915 0.952 1.29
120 000 5.874 0.038 0.073 0.0061 2.45 0.932 0.948 1.22
160 000 5.875 0.033 0.062 0.0060 2.57 0.920 0.950 1.20

TABLE V
Averages and Observed Coverage Rates, a $ 0.05, for Problem 4—Tridirectional Scattering,

Analog Capture, p $ 0.5, m $ 0.12685

n Sx RE VOV FOM SLOPE OCR OMCR
u0.95* " Sx
u0.95 " Sx

Low Range, 400 Replications

262 0.1268 0.0433 0.1076 2.29 4.82 0.900 0.920 1.27
526 0.1267 0.0313 0.0788 2.11 4.10 0.908 0.945 1.19
1 055 0.1269 0.0225 0.0582 1.99 4.47 0.935 0.945 1.19
1 318 0.1269 0.0202 0.0526 1.97 4.61 0.915 0.932 1.18
2 637 0.1271 0.0144 0.0351 1.91 4.95 0.925 0.940 1.10
3 955 0.1269 0.0117 0.0260 1.90 5.21 0.952 0.955 1.08
5 271 0.1270 0.0101 0.0201 1.89 5.60 0.952 0.955 1.06

High Range, 400 Replications

5 269 0.1269 0.0100 0.0159 1.92 5.51 0.955 0.958 1.06
10 543 0.1269 0.0071 0.0107 1.90 5.19 0.955 0.965 1.04
21 067 0.1269 0.0050 0.0064 1.88 5.71 0.958 0.965 1.03
26 328 0.1269 0.0045 0.0056 1.88 5.74 0.962 0.962 1.03
52 646 0.1269 0.0032 0.0030 1.88 5.75 0.958 0.965 1.02
78 985 0.1269 0.0026 0.0024 1.87 5.74 0.970 0.970 1.02
105 305 0.1269 0.0023 0.0018 1.87 5.75 0.962 0.965 1.01
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and OCRs edged up to ;88%. Some periodicity, with
amplitude decreasing as n increases, was seen in these
results, similar to that evident in Table VI. This is the
result of the discrete sawtooth nature of the sampled dis-
tribution, as successively more of the “teeth” are discov-
ered by sampling. Thus, the discreteness inherent in f ~x!
for problem 5, combined with a barely finite second mo-
ment, strongly affects the coverage rates. In problem 4,
where at least four moments exist, a similar phenom-
enon is not observed.

In all problems, the skewness-modified confidence in-
tervals improve coverage rates, and in problems 1 through
4, they result in near-nominal coverage for sample sizes n
about half as large as those needed for nominal coverage
of standard intervals. Likewise, for a given n, the amount
of error in the coverage rate was roughly halved by using
the modified intervals. The penalty for improved cover-
age is wider intervals, however; the final columns of
Tables II through VI show average ratios of half-widths
~u0.95* " Sx!0~u0.95" Sx!. For problems 1, 2, and 3, modified
confidence intervals range fromnearly three times as large
for the smallest n’s to 10 to 20% larger, at which point the
standard intervals cover at nearly 95%.Problem5hasmod-
ified intervals 1.5 to 2 times as wide as standard intervals,
and in fact average width goes up as n increases for cer-
tain values of n. Problem4 has average ratios near 1 for n’s
with coverage near 95%. Problems 1 and 5 do not have a
finite third moment, and the sampled distribution in prob-
lem 5 is highly discrete; in these cases, the Edgeworth ex-

pansion used to obtain the modified intervals is not valid,
and the coverage rates for these intervals may be conser-
vative as n grows large. Coverages do seem reasonable for
problem 1, which has only two moments existing but has
a continuous underlying distribution.

Based on results from Sec. II, average VOV should
be a good problem-independent indicator of nominal cov-
erage. This holds for all problems. In general, when the
average VOV drops to roughly the 0.05 to 0.07 range,
coverage is within 2 to 3% of 0.95. The converse also
appears true; in no case when coverage was under 90%,
say, was average VOV ( 0.10. Figure 5 is a plot of av-
erage VOV versus OCR for the midpoint and final n’s
for each of the five problems and two ranges simulated.
High and low ranges are denoted by h and l; for exam-
ple, problem 5, high range, is represented by 5h. For dis-
tributions with infinite fourth moment (problems 1
and 5), these results hold but should certainly be treated
with caution, as the sample average VOV may not con-
verge smoothly to zero, if at all. Also note that the rate at
which average VOV drops is faster [and should be
;O~n"1!# for the cases where convergence has been
achieved and four moments exist. Decreases slower than
O~n"1! indicate a negative bias (i.e., values are smaller
than expected). The third-moment analog toVOV, Zzn"102,
exhibits a similar relationship with coverage rates; see
Ref. 31 for details.

Average RE is not a good indicator of coverage-rate
validity, even though RE and VOV are highly correlated.

TABLE VI
Averages and Observed Coverage Rates, % $ 0.05, for Problem 5—Tridirectional Scattering,

Analog Capture, p $ 0.9, m $ 0.024971

n Sx RE VOV FOM SLOPE OCR OMCR
u0.95* " Sx
u0.95 " Sx

Low Range, 400 Replications

26 736 0.02493 0.0405 0.220 0.0385 2.67 0.830 0.900 1.55
53 477 0.02499 0.0317 0.187 0.0322 2.32 0.835 0.895 1.59
106 963 0.02498 0.0249 0.216 0.0271 2.82 0.818 0.850 1.83
133 694 0.02500 0.0229 0.232 0.0250 2.90 0.845 0.865 1.94
267 408 0.02501 0.0180 0.233 0.0209 3.02 0.828 0.860 2.04
401 106 0.02500 0.0153 0.224 0.0182 3.11 0.842 0.872 1.58
534 799 0.02498 0.0132 0.199 0.0175 3.19 0.828 0.858 1.45

High Range, 400 Replications

133 715 0.02496 0.0223 0.220 0.0260 2.94 0.798 0.818 1.89
267 403 0.02496 0.0173 0.233 0.0215 3.08 0.800 0.830 1.99
534 781 0.02499 0.0142 0.217 0.0176 3.22 0.845 0.875 1.50
668 454 0.02503 0.0140 0.212 0.0163 3.29 0.832 0.860 1.50
1 336 896 0.02499 0.0100 0.172 0.0141 3.53 0.845 0.892 1.49
2 005 392 0.02498 0.0083 0.170 0.0129 3.64 0.838 0.872 1.55
2 673 908 0.02498 0.0073 0.173 0.0121 3.71 0.842 0.890 1.65
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For problem 5, average REs are (0.01, yet OCRs (and
OMCRs) remain below 90%. The rate at which RE de-
creases should beO~n"102! if two moments exist and con-
vergence of the second-moment estimator has occurred.
As with VOV, a slower rate of decrease indicates a neg-
ative bias in RE.

Conversely, large REs (say, %0.10) generally indi-
cate that sampling should continue. The relative error of
the mean is useful for scaling the variability in Sx, i.e.,
indicating the approximate range of errors. In problems
1 and 5, average REs are (0.01 for large n; even if con-
fidence intervals are not covering m often enough, as in
problem 5, the total error is no more than a few percent.
This follows by observing that the relative biases in Sx are
much smaller in magnitude than the relative errors ob-
served, even for noncoverged situations. For example,
for problem 5 with n $ 160 000, the observed relative
bias in Sx is 0.0007, compared with an average relative
error of 0.025. (Observed biases in Sx can be obtained in
Tables II through VI by subtracting the theoretical value
of m from the average value of Sx; relative biases are ob-
tained by dividing this total by Sx.!

Average FOMs appear to converge down to a fixed
value for the near-nominal-coverage cases. This indicates
a negative small-sample bias in s2; Sx has less variance and
converges more quickly than s2, hence most of the varia-
tion in FOM is due to s2. This is more empirical evidence
for the argument that in highly skewed situations, sample

variance behavior (in particular, its variation as opposed
to itsmagnitude) iswhat determines the rate at which con-
fidence intervals cover at nominal levels.

The Pareto-based slope estimator was used in the
continuous data problems (1, 2, and 3) and the nonpara-
metric estimator in problems 4 and 5. For these latter prob-
lems, the Pareto estimator was too sensitive to the choice
of a truncation value because of the small number of dis-
tinct x values. Average SLOPEs generally converge to
their true values, except for problems 2 and 3, where the
extreme Pareto tail was insufficiently sampled. Except
for problem 1, for smaller n’s the bias in SLOPE is neg-
ative because of inadequate tail sampling, giving the in-
dication that fewer moments exist than is actually the case.
It should be emphasized that in general the slope esti-
mate will be less biased than moment estimates, espe-
cially higher moments.

Summarizing, these results provide further support for
usingVOV(or some othermeasure of the variability of s2!
to indicatewhen confidence interval convergence has been
reached. Slope estimates are useful in characterizing
whether or not the moment condition of the convergence
theory has been satisfied.Themodified intervalswere also
found to bring significant improvements in coverage,with
often substantial increases in interval width. The level of
discreteness present in the data was seen to have a detri-
mental effect on coverage rate validitywhen only twomo-
ments exist. We next examine batched-means normality

Fig. 5. Observed coverage rate versus average VOV, nominal coverage $ 0.05.
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tests for one of the simulated problems, followed by a dis-
cussion of the use of individual sample quantities as indi-
cators of coverage rate validity.

III.C.1. Batched-Means Normality Tests

Consider simulation problem 1 (generalized Pareto
distribution, two moments existing). Along with the sta-
tistics given in Table II, we computed the modified Wilk-
Shapiro test W ' from Eq. (9) for each sample, based on
m $ 25, 50, and 100 batches. Results are given in
Table VII [columns are sample size n, average VOV and
OCR, average W ' for each of three numbers of batches
m $ 100, 50, and 25, and rejection rates of W ' for these
numbers of batches (with corresponding batch sizes B!#.
The tests were at a $ 0.05, for the hypothesis that the
batch means were generated from a Gaussian distribu-
tion. Critical values of the test were (0.975, 0.953, 0.918),
corresponding to m $ (100, 50, 25). Critical values for
the test for other values of m can be easily generated and
are available from the first author (S.P.P.).

Several specific observations are immediately appar-
ent. The likelihood of rejecting the normality hypothesis
is directly related to the number of batches m that were
used. For example, consider the three cases where B $
160. When m $ 100 batches were generated, this test
rejected normality 83% of the time, while when 25 batches
were used, only one-third of the cases resulted in rejec-
tion (even though a batch sample size of 160 clearly does
not correspond to a converged situation). This highlights
a characteristic of all statistical goodness-of-fit tests; if
the sample size is large enough, any departure from the
assumed distribution (Gaussian, in this case) will result
in rejection. Hence, if the batch size B is not sufficiently
large and is fixed as m grows, the hypothesis of normal-
ity may never be accepted because increasing m will de-
tect finer and finer discrepancies from normality.

A second comment relates to the intended use of the
test, which is for assessing normality of the overall mean
Sx. The Wilk-Shapiro test rejection rate shows consider-

able dependence on both m and B: For m $ 100, most
cases reject normality, while form$ 25,(50% do. Both
these facts are true regardless of whether the overall mean
Sx has converged ~n % 10 000! or not ~n ( 10 000!. The
modified Wilk-Shapiro test W ' is not indicating when Sx
has converged. Instead, the test accomplishes what it is
designed to do: indicate when the distribution of a ran-
dom variable is normal. However, here this indication is
for the batched means based on samples of (batch) size B
and not for the overall mean with sample size n. For n $
80 000 and m $ 25, batch sizes are B $ 3200, and con-
vergence to normality is beginning to occur (20% of the
samples reject normality, when nominally 5% should).
Sampling would need to continue much longer (in this
case, a factor of 5 to 10 times as long) using the stringent
Wilk-Shapiro statistic than our empirically based criteria
indicate. Note that our criteria do not necessarily indi-
cate full convergence to normality, but rather only that
approximately valid confidence intervals for Sx can be
formed.

Similar phenomena were seen for the other distribu-
tions simulated in this paper. The distributions consid-
ered here are in some sense “best case” because they are
the most regular and exhibit smooth convergence to nor-
mality. Normality tests using batched means depend on
the number of batches considered and provide limited in-
formation about whether the full mean Sx has converged,
at least in the sense of covering the true value at nominal
levels.W ' did not consistently indicate normality in con-
verged situations. There is still a place for batched-mean–
normality tests in assessing convergence, however. For
this problem, it appears that when m $ 50 there is some
direct correspondence between OCR and the W ' rejec-
tion rate; however, in other models different levels of m
gave better results. Statistics like W ' can be used in a
similar manner to our use of VOV and the slope estima-
tor in obtaining rules about stopping strategies. Q-q plots
are a useful graphical tool in assessing convergence but
again, for means of size B and not necessarily of size n.
In short, normality tests can be useful when combined

TABLE VII
Batched-Mean Wilk-Shapiro Test Averages and Rejection Rates, a $ 0.05, for Problem 1—Generalized Pareto,

400 Replications, k $ 3.5, m $ 1.6667, m $ Number of Batches

Average W ' Rejection Rate (and Batch Size B!

n VOV OCR m $ 100 m $ 50 m $ 25 m $ 100 m $ 50 m $ 25

1 000 0.123 0.905 0.789 0.850 0.881 1.000 (10) 0.888 (40) 0.463 (40)
4 000 0.080 0.910 0.862 0.904 0.911 0.970 (40) 0.555 (80) 0.333 (160)
8 000 0.067 0.920 0.892 0.930 0.934 0.938 (80) 0.445 (160) 0.278 (320)
16 000 0.057 0.948 0.909 0.935 0.934 0.830 (160) 0.513 (320) 0.255 (640)
40 000 0.042 0.938 0.935 0.941 0.948 0.775 (400) 0.280 (800) 0.303 (1600)
80 000 0.038 0.950 0.945 0.960 0.947 0.680 (800) 0.280 (1600) 0.205 (3200)
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with other tools, but by themselves they are poor indica-
tors of when confidence intervals based on Sx cover at nom-
inal levels and may be very inefficient when used as
stopping criteria.

III.D. Analysis of Run-Specific Quantities

The second main goal of the simulation was to as-
certain if sample-based quantities can predict when cov-
erage rates will be near nominal levels. As Efron32 points
out, in one sense this is an impossible problem because
there can always be a small amount of probability, suf-
ficiently far out in the tail of the distribution, to cause
sample means to underestimate m. However, it is also
true that if the central limit theorem conditions are sat-
isfied so that t has an N~0,1! distribution, eventually in-
tervals will cover at the nominal rate; this analysis is
merely an attempt to predict when convergence has oc-
curred. In particular, we wish to obtain estimates of
P~m ! Ia!, for Ia $ ~"`,ua!, where ua is the upper
end point of a ~1 " a! ! 100% upper confidence inter-
val for m as defined earlier. In this formula, as in all con-
fidence interval formulas, the random quantity is not m
but Ia .

Care must be taken when defining “validity” with
respect to confidence intervals.An individual sample pro-
duces an interval that either covers m or does not; rather,
we are interested in predicting whether or not the prob-
ability of coverage is near the nominal value 1" a. Fur-
thermore, this probability should be conditioned on the
value of any predictors that are chosen, e.g., P~m !
Ia6VOV ( 0.05) $ 1 " a. In fact, conditioning should
not be based directly on sample size n because we are
effectively trying to determine if a given n is large enough.

How conditioning is done is important for the fol-
lowing reason. Consider the rule alluded to earlier: Stop
sampling if VOV( 0.05, and continue running the prob-
lem otherwise. From the results presented so far, this
seems like a reasonable rule. However, for a given sam-
ple size n it may be true that the larger VOVs correspond
to “better” coverage than do smaller VOVs (the same
holds true for REs). For example, in problem 2, with n $
160000, overall coverage ofm is 0.92, fairly close to nom-
inal. Of the samples run (out of 400) with VOV ( 0.05,
91% of the resulting intervals cover, while if VOV% 0.05,
97% cover. This makes sense because a smaller VOV is
correlated with a smaller RE and hence smaller inter-
vals. Nevertheless, this result is only useful for charac-
terizing coverage for this specific value of n and for the
specific distribution of this problem.Across problems and
sample sizes, smaller VOVs are indicative of coverages
closer to nominal values. In searching for rules that are
problem- and sample size-independent, we will instead
look at both “converged” and “nonconverged” situations
and compare the behavior of predictors in each case.

Prediction rules of the following form will be con-
sidered: Stop sampling if some condition A is satisfied,

and continue sampling otherwise. These rules can be made
up of other rules; we will focus mainly onAND-type rules;
i.e., A is an intersection of other conditions. In particle
transport simulations, stopping too soon with an incor-
rect value of a parameter is generally more costly than
running a simulation for too long. Thus, we will prefer
rules that suggest stopping only when there is strong ev-
idence that n is sufficiently large. The set of possible pre-
dictors examined here will be taken from a set of statistical
checks similar to those that appear in the current imple-
mentation of MCNP.

III.D.1. Statistical Checks

The following list from Forster19 is a set of checks or
rules basedon information contained inTFCs inMCNP4A.
In each case, the checks are passed if the stated condition
is satisfied.Whennot specified, the checks refer to thevalue
of statistics at the end of the run.

1. Sx was not monotonically increasing or decreasing
over the last half of the simulation run.

2. RE ( threshold (usually 0.10 or 0.05).

3. RE decreases at a rate of;n"102 over the last half
of the run.

4. RE is monotonically decreasing, with small fluc-
tuations allowed, over the last half of the run.

5. VOV ( threshold (usually 0.10).

6. VOV decreases at a rate of;n"1 over the last half
of the run.

7. RE is monotonically decreasing, with small fluc-
tuations allowed, over the last half of the run.

8. *FOM ( threshold (usually 0.20), where *FOM
is defined as the relative range of 10FOM over the last
half of the run; i.e., *FOM $ [max(FOM"0.5 ) "
min(FOM"0.5)]0(FOM"0.5 at termination). This param-
eterization was chosen to accentuate the variation in FOM
due to variation in s2.

9. FOM was not monotonically increasing or de-
creasing over the last half of the simulation run.

10. SLOPE% 3 (at least two moments are indicated
to exist).

Checks 2, 5, and 10 are calculated at the end of a
run; the remaining checks incorporate intermediate-n
information. All of these checks, many based on heuris-
tic evidence built up over time, are designed to pass when
theN~0,1! approximation to the distribution of t is valid.
As Sx nears m, it should fluctuate randomly. RE should
drop at rate n"102 when s0 Sx is close to s0m, and drop-
ping nearly monotonically is equivalent to the flucta-
tions in s0 Sx being small relative to the decrease in n"102.
Similar comments apply to the checks involving VOV,
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the relevant quantity in this case being [m40s4, which con-
verges to m40s4. The FOM rules monitor the stability
and randomness of s0 Sx. Analysis of these and other rules
follows.

III.D.2. Analysis of Checks

For the purpose of developing predictors, we will
assume that convergence has been achieved for the
high ranges of problems 1, 2, and 3 and both ranges of
problem 4, based on OCRs at the end of each of those
simulations. Similarly, we will consider the other five
problem-range combinations to be nonconverged. Within
these broad groupings, we can order the combinations
by the closeness to 95% coverage: 4-high, 1-high, 4-low,
2-high, 3-high for the converged problems; and 1-low,
2-low, 3-low, 5-high, 5-low for the nonconverged prob-
lems. (These groupings are completely arbitrary. In par-
ticular, note that 1-low and 3-high have very similar
OCRs. Different groupings may result in different rules
being developed, but the qualitative content will remain
similar. Likewise, rules developed for OMCRs instead
of OCRs will give different thresholds but will be of
similar nature. In Sec. IV, we include some rules based
on OMCRs instead of OCRs.) Rules should thus indicate
stopping for the converged problems with high proba-
bility and stopping for the nonconverged problems with
low probability. We will first consider single-condition

rules and then move on to combinations (pairs, triples,
etc.).

Of the ten checks described previously, the VOV
threshold check is the single best predictor of conver-
gence, when evaluated purely in terms of observed cov-
erage rate. Two other measures, *FOM and the rate of
decrease in RE, convey virtually the same information
as each other and are also valuable predictors. (The rel-
evant quantity for the rate of decrease in RE is not the
absolute decrease but rather the distance from the ex-
pected decrease rate of 10#2 $ 0.7071 for a doubling of
n.! Figures 6, 7, and 8 are plots of empirical cdf’s of these
three statistics for the ten problem-range combinations,
based on 400 replications. (For example, “1l” stands for
problem 1, low range.) Ideal predictors will have empir-
ical cdf values of 1 for converged situations and empir-
ical cdf values of 0 for nonconverged cases. The
classification and regression tree (or CART) approach of
Brieman et al.33 was used to determine decision rules for
these predictors. CART verified that checks 5, 8, and 3
(with check 5, the VOV ( threshold rule, most power-
ful) are the best single-check predictors in terms of hav-
ing the lowest misclassification rates. Separating lines,
or thresholds, for these predictors from CART are 0.045,
0.105, and 0.060, respectively, and are included as ver-
tical lines on the plots. Based on these data, it appears
that separating lines somewhere between 0.03 and 0.05
for VOV, between 0.08 and 0.12 for *FOM, and between

Fig. 6. Empirical cdf’s of VOV, with vertical separating line.
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Fig. 7. Empirical cdf’s of *FOM, with vertical separating line.

Fig. 8. Empirical cdf’s of decrease in RE, with vertical separating line.
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0.05 and 0.08 for the decrease in RE are appropriate. No
other single check from the aforementioned list of ten had
strong predictive power, although some of the remaining
checks will be discussed later. (See Ref. 31 for more de-
tails on this analysis.) For what follows, we will focus on
*FOM and note that groupings based on the decrease in
RE were virtually identical to those based on *FOM.

Testing pairs of rules with the AND construct again
found the combination ofVOVand*FOM to bemost sig-
nificant in predicting coverage rate validity. Table VIII
shows individual pass0no pass rates for each problem, for
VOV ( 0.045, for *FOM ( 0.105, and for the rule that
combines those two rules: VOV ( 0.045 and *FOM (
0.105. (Fine tuning of these joint thresholds may result in
slightly higher classification rates, but this may result in
overfitting of the available data and is not recommended
for generalization purposes.) For this combined rule, the
pass rates for the ten groups give an ordering very similar
to that given at the start of this subsection. The only po-
tential problem is with the 17%pass rate for the low range
of problem 5. These runs corresponded to very low values
of VOV and *FOM, with SLOPE indicating several mo-
ments existing, a situation forwhich these ruleswould sug-
gest that sampling should cease.These are caseswhere the
tail of the density has not been adequately sampled. Low-
ering the VOV threshold would filter these cases out but
will bring down overall pass rates.

No triple or larger set of checks improved the sepa-
ration of groups considerably. The decrease in RE gave
the same classifications as did *FOM and did not inter-
act differently with the VOV rule. Checks 1, 3, 6, and 8
had no substantial predictive power, and neither did
check 2, the RE threshold rule.

There was limited evidence that the rate of decrease
in VOV (check 7) was closer to the expected rate of 10n
for converged samples than for nonconverged samples
when, in addition, the slope estimator (check 10) indi-
cated that at least two moments exist (SLOPE% 3). How-

ever, the low range of problem 5 was not correctly
classified using this rule. Neither check 7 nor check 10
were useful single indicators of convergence, but each
provides information about the number of finite mo-
ments, particularly the slope estimator.

Summarizing, the most useful measures found here
for prediction of confidence interval validity were effec-
tively surrogates for the variability in the sample vari-
ance s2. VOV measures this directly, and the *FOM and
rate of decrease in RE measure the stability of s0 Sx, which
measures the stability of s because of the faster conver-
gence of Sx. Scale measures (such as RE) and measures
based on convergence patterns were not found to be use-
ful predictors.

We have found rules that use VOV and work even
when there is strong evidence that fewer than four
moments exist. The properties of estimators like VOV
(effectively, a scaled-moment estimator divided by sam-
ple size: [m40s2n! in these cases is in general not known,
but rates of convergence depend on the degree of
smoothness of the underlying distribution. When the un-
derlying moment (in this case, m4! of an estimator such
as VOV does not exist, there is no guarantee that large
jumps will not occur in the value of the estimator, or at
what rate they may occur. Caution should be taken if
VOV is to be used in these settings. An extreme case is
problem 5, where severe skewness combines with dis-
creteness to bias the behavior of both moment and slope
estimates. This bias is most pronounced for functions of
higher order moments like VOV. For this problem, VOV
gets “fooled” in the low-n range, while *FOM does not
(note that the second moment does exist). Discreteness
can also bias the true tail slope but to a lesser degree, as
the next maxima to be sampled may be an order of mag-
nitude larger than anything seen previously, with a cor-
responding order of magnitude drop in probability. From
the point at which diagnostic statistics satisfy the afore-
mentioned rules, it is recommended that the simulation

TABLE VIII
Pass Rates for Selected Rules

Problem VOV ( 0.045 *FOM ( 0.105
VOV ( 0.045 and
*FOM ( 0.105

5 low 0.180 0.188 0.172
5 high 0.072 0.338 0.040
3 low 0.002 0.272 0.002
2 low 0.025 0.382 0.022
1 low 0.585 0.542 0.478
3 high 0.640 0.660 0.555
2 high 0.828 0.762 0.712
4 low 0.940 0.868 0.848
1 high 0.828 0.798 0.782
4 high 1.000 0.995 0.995
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be run (or examined, if the runs have already been made)
a further period of time (1.5 or 2 times the original n!
and SLOPE, VOV, and other statistics that measure vari-
ability in s2 be monitored. If these diagnostics still look
reasonable after this further calculation, there is addi-
tional evidence that the problem has truly converged.

All of the predictors in this section are random quan-
tities and hence subject to sampling bias and statistical er-
ror. Higher order sample moments are more likely to be
biased than lower ones. Even in what appear to be con-
verged settings, large jumps in the value of statistics such
as VOV or RE can occur if the corresponding population
moments do not exist. These jumps can be based on a sin-
gle extremeobservation. Jumps can also occurwhenhigher
ordermoments exist but become less likely as n increases.
Any sort of inferential procedurewill only be based on the
available data, and if sufficient unsampled f ~x! tail prob-
ability exists, eventually it will be discovered, sometimes
in the form of a single very large observation. This indi-
cates that evenwhen conditions suggest that sampling can
cease, and with four or more moments indicated to exist,
additional particle histories should be generated past the
point that these conditionswere first satisfied.Running the
problem longer will reduce the bias in the statistics, if rel-
evantmoments exist. If relevantmoments do not exist, ad-
ditional sampling will still reduce the chance that the
observed value of the statistic is too low. For example, ex-
amination of the high range of problem 5 in Table VI sug-
gests that if we consider those samples that passed the
VOV( 0.045 rule at average n$ 534 781 (of which there
are 14%), only 25% of these samples also passed when n
wasdoubled (seeRef. 31 for additional discussion). For the
low rangeof problem1,which is on the edgeof being a con-
verged problem, a similar technique applied at n $ 4000
(with a pass rate for the combined rule of 48%) found that
90% of these samples passed at the higher n of 8000. Note
that for both of these sample sizes, coveragewith themod-
ified interval is very close to the nominal 95%, so the high
pass rate for a situation termed “nonconverged” is not a
problem.

Some other sample-based measures, such as the ra-
tio of the cumulative maximum value to the cumulative
sum and various functions of the slope estimator, were
also tried as predictors, with limited success. Both mea-
sure the influence of large values with low probability,
and more research is needed in both areas. We close by
noting that other techniques commonly used in simula-
tion to improve convergence properties, such as the use
of variances of batched means to estimate s2, were tried
but had no effect on overall coverage rates.

IV. CONCLUSIONS

IV.A. Example Revisited
We now return to the Monte Carlo test problem dis-

cussed in Sec. I. The problem required much larger sam-

ples before inference stabilized. The tally fluctuation chart
for the entire 1-billion-history run is given in Table IX
for two different point detector tallies (tallies 35 and 45)
that estimate the same quantity and are independent of
each other. Our discussion will concern tally 35, the one
we originally discussed, but similar comments apply to
tally 45. After ;400 million histories, the VOV( 0.045
and *FOM ( 0.105 rules are satisfied, and the (stan-
dard) 90% confidence interval for m at this point, using
Eq. (7), is 5.774 ! 10"8 # 0.256 ! 10"8 (or 5.517 !
10"8, 6.030 ! 10"8 ), which includes the true m of
5.64! 10"8. However, the SLOPE at this point (2.2) in-
dicates only the mean existing, so sampling should con-
tinue; the REmay still experience large jumps. Eventually,
at ;650 million histories, SLOPE exceeds 3, indicating
a finite variance, with the other rules still satisfied. Run-
ning the problem to 1 billion points (not quite the dou-
bling suggested in Sec. III.D) again satisfies all rules and
gives more indication that four moments exist. In retro-
spect, the user could probably have stopped at 650 mil-
lion histories, after an indication that more than two
moments exist, but with the proviso that the VOV esti-
mator is subject to possible large jumps. However, run-
ning the calculation longer at this point would still be
prudent. Note that we have intentionally chosen an ex-
treme case to test our recommendations; in most Monte
Carlo particle transport tallies, the variance generally
exists, and four or more moments often do. (For this prob-
lem, superior estimators are available. In fact, the two-
dimensional ring detector is 230 times more efficient than
the point detector, and the one-dimensional surface flux
estimator is 28 500 times so.) The methodology pre-
sented here is general and is designed to be applied in
any situation with iid histories.

IV.B. Recommendations

The theoretical and empirical results presented here
are intended to provide guidance for theMonte Carlo prac-
titioner in making inferences about the simulated prob-
lem. It is assumed that the user will run the calculation
for a period of time. At that point, the following recom-
mendations regarding the formation of valid confidence
intervals can be applied:

1. Plot the estimated tally density f ~x!. Log-log his-
tograms and tail density slope estimates, such as those
produced in MCNP, can provide visual information re-
garding the number of moments that appear to exist, the
appropriateness of the power-law approximation for the
tail, and the degree of discreteness present in the data.

2. Monitor the VOV, the relative change in the FOM,
the rate of decrease in the RE, and SLOPE. With VOV(
0.03 to 0.05, *FOM( 0.08 to 0.12, and an indication of
four or more moments existing (SLOPE% 5), the results
of Sec. III indicate a high likelihood that the problem
in question has converged. Alternatively, replacing the

74 PEDERSON, FORSTER, and BOOTH

NUCLEAR SCIENCE AND ENGINEERING VOL. 127 SEP. 1997



aforementioned VOV rule with VOV ( 0.10 and the
*FOM rule with *FOM( 0.20 (and keeping the SLOPE
rule the same) will indicate convergence when using the
modified confidence intervals. If the first two conditions
are satisfied, but the slope estimator indicates fewer than
four moments existing, caution should be taken when
forming confidence intervals, as large jumps in the value
of sample statistics can occur (see recommendation 4). If
fewer than two moments are indicated to exist, sampling
should definitely continue to determine if the variance is
finite. In addition, if histograms indicate a high degree
of discreteness or clumping in the data, higher order mo-

ment estimators (particularly RE and VOV) and the slope
estimator (to a lesser degree) may be subject to bias un-
less there is a strong indication that at least four mo-
ments exist. Large jumps in the value of one of the higher
order moments indicate that more sampling is needed for
that particular moment estimator to converge.

3. Use the skewness-modified confidence interval
Iu* if three moments are indicated to exist. These inter-
vals give asymmetric bounds about the sample mean,
with improved coverage. In general this is a safe proce-
dure to use (even when only two moments exist); when

TABLE IX
Large-n TFCs for Example Problem—Point Detector Tally, m $ 5.64 ! 10"8(#0.02%)

n Sx RE VOV FOM SLOPE

Tally 35

65 536 000 6.4201E-08a 0.0673 0.0897 1.3 2.0
131 072 000 5.8210E-08 0.0427 0.0588 1.6 2.3
196 608 000 5.8982E-08 0.0373 0.0733 1.4 2.1
262 144 000 5.6879E-08 0.0306 0.0615 1.6 2.2
327 680 000 5.7017E-08 0.0278 0.0455 1.5 2.2
393 216 000 5.7736E-08 0.0270 0.0347 1.3 2.2
458 752 000 5.7618E-08 0.0245 0.0297 1.4 2.3
524 288 000 5.7136E-08 0.0231 0.0256 1.4 2.4
589 824 000 5.7067E-08 0.0215 0.0221 1.4 2.7
655 360 000 5.6790E-08 0.0202 0.0199 1.4 3.1
720 896 000 5.7927E-08 0.0200 0.0167 1.3 4.0
786 432 000 5.7358E-08 0.0186 0.0161 1.4 3.8
851 968 000 5.7515E-08 0.0184 0.0161 1.3 4.0
917 504 000 5.7470E-08 0.0176 0.0148 1.3 4.2
983 040 000 5.7540E-08 0.0173 0.0147 1.3 4.9
1 000 000 000 5.7745E-08 0.0172 0.0141 1.3 5.4

Tally 45

65 536 000 5.4740E-08 0.0496 0.1167 2.4 2.6
131 072 000 5.4582E-08 0.0399 0.0670 1.9 2.6
196 608 000 5.3922E-08 0.0334 0.0612 1.8 2.2
262 144 000 5.5989E-08 0.0318 0.0530 1.5 1.9
327 680 000 5.6103E-08 0.0288 0.0456 1.4 1.8
393 216 000 5.5560E-08 0.0256 0.0388 1.5 2.0
458 752 000 5.5768E-08 0.0233 0.0316 1.6 2.4
524 288 000 5.5128E-08 0.0212 0.0285 1.6 2.3
589 824 000 5.5585E-08 0.0215 0.0313 1.4 2.4
655 360 000 5.5971E-08 0.0206 0.0259 1.4 2.6
720 896 000 5.5810E-08 0.0195 0.0234 1.4 2.9
786 432 000 5.5655E-08 0.0184 0.0215 1.4 3.4
851 968 000 5.5595E-08 0.0178 0.0196 1.4 3.8
917 504 000 5.5649E-08 0.0172 0.0178 1.4 4.9
983 040 000 5.5567E-08 0.0166 0.0165 1.4 5.2
1 000 000 000 5.5419E-08 0.0164 0.0164 1.4 5.1

aRead as 6.4201 ! 10"8.
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convergence of t to normality has been achieved, the
modified interval is about the same length as the stan-
dard interval and covers at about the same rate. When
less than three moments are indicated to exist, the as-
ymptotic result is not valid, but the resulting intervals
will be conservative (and possibly subject to large in-
creases in width). Likewise the result, which is based
on an Edgeworth expansion, is not asymptotically valid
for discrete sampled distributions, but in practice this
appears to matter only when less than four moments are
finite. In any case, the modified intervals will be at least
as conservative as the standard, uncorrected intervals.
(Note that for all cases considered herein, the OMCR is
never (0.92 when average VOV ( 0.1 as required by
MCNP’s check 5 in Sec. III.D.1. Thus the user should
have very good confidence in the OMCR.)

4. Although it is not necessary in most cases, an
added measure of confidence can always be obtained by
running still more histories. When is this reasonable and
how many more histories should be run? Suppose that
the user has run n histories and the conditions described
in recommendation 2 are first satisfied for n' ( n. If n (
2n' and fewer than four moments are indicated to exist at
n histories, then extend the calculation to 2n' histories; if
n % 2n' already, then no additional histories are re-
quired. If n ( 1.5n' and four moments are indicated to
exist at n histories, then extend the calculation to 1.5n'
histories; if n % 1.5n' already, then no additional histo-
ries are required. In either case, sample statistics should
be monitored and sampling stopped only if the aforemen-
tioned criteria regarding the variability of s2 are satis-
fied. Stopping at this point will not absolutely guarantee
that convergence has been achieved, but it does give the
user more evidence that the requirements needed for ap-
plication of central limit theorem–type results are satis-
fied. This strategy, while perhaps conservative, will tend
to identify highly biased cases, as was seen for the low-
range n’s for problem 5. If the conditions in recommen-
dation 2 are not satisfied, and especially if there is no
evidence of two finite moments, more histories should
be examined.

5. The relative error of the mean RE should be
thought of primarily as a measure of the error Sx, as op-
posed to an indicator of convergence. However, confi-
dence intervals definitely should not be formed if RE %
0.1.

6. Batched-mean normality tests can be used to mon-
itor the distribution of batch means of size B. If means of
size B are normally distributed, it follows that means of
size n $ mB will be also. However, the converse does
not follow, and thus batched means tests are not recom-
mended for determining when to stop sampling.

In summary, the variability in the sample variance
s2, measured by VOV (when four moments exist) or other

surrogate statistics, is the primary determinant of confi-
dence interval validity. The rate of convergence to ap-
proximate normality of t is influenced by both the numbers
of moments which are finite, measured by an estimate of
the tail f ~x! slope, and the degree of discreteness in the
underlying sampled distribution. Thus, diagnostics that
measure these quantities will be useful in making infer-
ences when sampling from highly skewed populations
of the sort that commonly appear in particle transport
simulations. It is the authors’ hope that this paper will
stimulate the use of statistical methodology among trans-
port simulation practitioners, and that feedback from users
will lead to further refinements and discoveries.
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